Newton-Hensel Interpolation Lifting
نویسندگان
چکیده
The main result of this paper is a new version of Newton-Hensel lifting that relates to interpolation questions. It allows one to lift polynomials in Z[x] from information modulo a prime number p 6= 2 to a power pk for any k , and its originality is that it is a mixed version that not only lifts the coefficients of the polynomial but also its exponents. We show that this result corresponds exactly to a Newton-Hensel lifting of a system of 2t generalized equations in 2t unknowns in the ring of p -adic integers Zp . Finally we apply our results to sparse polynomial interpolation in Z[x] .
منابع مشابه
A Hensel lifting to replace factorization in list-decoding of algebraic-geometric and Reed-Solomon codes
This paper presents an algorithmic improvement to Sudan’s list-decoding algorithm for Reed-Solomon codes and its generalization to algebraic-geometric codes from Shokrollahi and Wasserman. Instead of completely factoring the interpolation polynomial over the function field of the curve, we compute sufficiently many coefficients of a Hensel development to reconstruct the functions that correspon...
متن کاملUsing Sparse Interpolation in Hensel Lifting
The standard approach to factor a multivariate polynomial in Z[x1, x2, . . . , xn] is to factor a univariate image in Z[x1] then lift the factors of the image one variable at a time using Hensel lifting to recover the multivariate factors. At each step one must solve a multivariate polynomial Diophantine equation. For polynomials in many variables with many terms we find that solving these mult...
متن کاملApproximate GCD of Multivariate Polynomials
Given two polynomials F and G in R[x1, . . . , xn], we are going to find the nontrivial approximate GCD C and polynomials F , G ∈ R[x1, . . . , xn] such that ||F − CF ′|| < and ||G − CG′|| < , for some and some well defined norm. Many papers 1,2,3,5,8,10,11,13,15 have already discussed the problem in the case n = 1. Few of them 2,10,11 mentioned the case n > 1. Approximate GCD computation of un...
متن کاملAlgebraic Osculation and Factorization of Sparse Polynomials
We prove a theorem on algebraic osculation and we apply our result to the Computer Algebra problem of polynomial factorization. We consider X a smooth completion of C and D an effective divisor with support ∂X = X \ C. Our main result gives explicit conditions equivalent to that a given Cartier divisor on the subscheme (|D|,OD) extends to X. These osculation criterions are expressed with residu...
متن کاملTR-2005008: Toeplitz and Hankel Meet Hensel and Newton Modulo a Power of Two
We extend Hensel lifting for solving general and structured linear systems of equations to the rings of integers modulo nonprimes, e.g. modulo a power of two. This enables significant saving of word operations. We elaborate upon this approach in the case of Toeplitz linear systems. In this case, we initialize lifting with the MBA superfast algorithm, estimate that the overall bit operation (Boo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Foundations of Computational Mathematics
دوره 6 شماره
صفحات -
تاریخ انتشار 2006